ARM Water Vapor Research and ARM Site Atmospheric State Best Estimate

Hank Revercomb, Dave Tobin, Dave Turner, Bob Knuteson, Wayne Feltz CIMSS/SSEC/UW-Madison

ARM Water Vapor Research

- Special ground-based facilities, including
 - Microwave radiometers
 - Accurate in situ references
 - Raman Lidar
 - AERI
 - Millimeter Cloud Radar
 - Micropulse and Ceilometer Cloud Lidars
- Highlight issues with sondes
- Approach to Best Estimate Atmospheric State

Atmospheric Radiation Measurement Program

In Situ Sensors

Microwave

LIDAR

Raman Lidar (RL)

- Automated 24-hour profiling
- Detects water vapor & N₂ Raman scattering, plus elastic scattering
- Products include profiles of
 - (1) water vapor mixing ratio
 - (2) aerosol extinction, backscatter, and optical thickness
 - (3) linear depolarization ratio

Water vapor mixing ratio

AERI Water Vapor Mixing Ratio compared with Raman Lidar

AERI Retrievals

Cold Front
Passage,
Lamont, OK
7 April 2000

ARM Water Vapor IOP's: Background

Motivation:

- (1) Lower Troposphere: Line-by-line Radiative Transfer Model improvements from AERI limited by water vapor uncertainties
- (2) <u>Upper levels</u>: Small amounts of water vapor strongly influence emission to space and cooling rates

Goals:

- (1) Characterize current observing accuracy from Sondes and *In Situ* sensors
- (2) Develop techniques to reduce WV uncertainties (approaching 2% absolute accuracy in the lower troposphere & 10% of upper-most 0.1 mm)

Water Vapor Uncertainty Goals:

Vaisala Radiosondes

(RS-80, until RS-90 replacement in 2000)

- ARM found large (>30% p-p) Sonde-to Sonde scatter that acts like a scale-factor calibration error
- Dry bias (averaging [] 5%) relative to microwave identified
- Calibration batch-to-batch & diurnal biases identified
- Sonde dry bias also identified by NCAR in TOGA COARE
- Correction developed by Vaisala that removes dry bias, but little effect on scatter & 3% daytime diurnal dry bias
- A stable reference, like the microwave radiometer, is key to reducing scatter to acceptable levels

Dual Radiosonde Differences:

Dominantly Characterized as Scale-factor Calibration Errors!

Dual Sonde Launches Revealed Sonde-to-Sonde Differences of > 30% p-p

Ratio of PWV from Dual Sondes

All dual sondes from the 1996 and 1997 WVIOPs

Dual sondes with sondes from different batches

Ratio of Microwave to Radiosonde PWV

- Microwave ratio for 4 year record shows sonde-to-sonde variability similar to dual sondes
- Displays 5-6% sonde dry bias relative to microwave
- Standard Deviation is about 7% (implies >35% p-p), including significant calibration batch dependence

Effect of Vaisala Correction

(red symbols)

- Sonde 5% mean dry bias eliminated
- Large Scatter, 3-4% daytime dry bias, & Calibration batch dependence mainly unchanged

Analysis of MWR "Scale Factors"

uncorrected and corrected sondes

Upper Level Findings

Upper Level Findings

- <u>Current algorithm</u> for the Southern Great Plains uses: radiosondes, MWR, AERI+ retrieval, Vaisala ceiliometer, RUC-2 profiles, GOES-8 retrievals, surface and tower-based *in-situ* sensors, and IRT data.
- <u>Two radiosondes</u> that closely bound one overpass time per day will be launched from all ARM sites for Aqua/AIRS, 3 months per year
- <u>Time interpolation</u> between sondes currently uses AERI + retrieval 10 minute data (clear) or hourly RUC-2 profiles (cloudy)
- <u>Large scale spatial gradients</u> within AMSU FOV accounted for using GOES8 (clear) or RUC-2(cloudy) profiles
- <u>Upper Tropospheric Humidity</u> (UTH) correction making use of Raman Lidar is under development
- <u>Land surface emissivity</u> estimates from AERI measurements of pure SGP surface types (vegetated and non-vegetated) combined with estimates of the vegetation cover as a function of day of year
- <u>Surface temperature</u> estimates from downlooking (from 10m) narrow-band 10mm radiometer (IRT) at CART site
- Cloud mask and heights provided by Vaisala ceiliometer
- <u>Uncertainty estimates</u> will be provided
- Currently working on QC and automation of algorithm for SGP site, then NSA and TWP sites

AERI+ retrievals for time interpolation between sondes

Spatial gradients

SurfaceType/Emissivity Survey

A survey was conducted on Nov 29 to characterize the surface type and spectral emissivity in the vicinity of the ARM SGP Central Facility site.

SGP Surface emissivity estimate

vegetation fraction vs. day of year

Linear combination of bare soil and vegetated emissivities

15 Dec 2000 SGP overpasses at 0807 and 1910 utc

Raman lidar linear depolarization ratio data 15 Dec 2000

